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smMARY

The correlation functions and power spectra of the rolling and yawing
moments on sn airplane wing due to the three components of continuous
random turbulence are calculated. The rolXng mcments due to the longi-
tudinal (horizontal) and normal (vertical) components depend on the span-
wise distributions of instantaneous gust intensity, which are taken into
account by using the inherent properties of symmetry of isotropic t“ubu-
lence. The results consist of expressions for correlation functions or
spectra of the rolling moment in terms of the point correlation functions
of the two components of turbulence.

Specific numerical calculations sre made for a pair of correlation
functions given by simple .maQt.ic expressions which fit available experi-
mental data quite well. Calculations sre made for four lift distributions.
Comparison is made with the results of previous ansJyses which assuned
random turbulence along the flight path and linear variations of gust
velocity across the spsn.

The rolling moment due to lateral (side) gusts, which is small, is
expressed in terms of the instantaneous value of the gust near the center
line of the fuselage, so that the effect of spmwise variation in gust
intensity is ignored. The yawing moments are considered to be propor-
tional to the rol-g moments with the constants of proportionality given
by simple aerodynamic relations.

INTRODtKTION

The gust velocities acting on an airplane flying through turbulent
air sre functions of position or time known only in a statistical sense.
consequently, aerodynamic forces and moments produced by the lifting
surfaces of the airplsne can be known only in a statistical sense. If
the statistical characteristics of the turbulence we assumed to be
invariant with position sJ-ongthe flight path, flight through turbulent
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air may be considered to be a stationary random process and the mathe- .

matical techniques developed,for such processes (see ref. 1, for instance)
may then be ueed in this problem. *“

This approach has been adopted in many papers on this subject, among
them references 2 and 3. @smuch as in these papers the motions and
forces associated with the longitudinal degrees of freedom were of primsz’y
interest, the assumption was made, implicitly, that the gust intensity is
uniform along the span at any instant. However, for the problem of ana-
lyzing the motions snd forces associated with the lateral degrees of free-
dom, this assumption is inadequate, inasmuch as it implies that the verti-
cal -d horizontal gusts produce zero rolling and yawing moments conthe
wing. This problem has been treated in references k and 5 sad elsewhere
on the basis of the assumption that at s+y instant the gust intensity
varies linearly across the span.

—

A fundamental.method of accounting for the lift on a wing due to
ran&m variations of the gust velocities in both the flight-path and the
spanwise directions is given in reference 6 for the longitudinal responee
of an airplane in atmospheric turbulence. The approach is based on the
assumption that the turbulence is sxisymmetric (according to ref. 7), so
that, at sny erbitraz’ytime or position in the turbulence, the statistical
characteristics of the turbulence encountered by an airplane do not depend
on the heaMng of the airplane. On the basis of this assumption, the
variation of gust intensity across the span can be rekted to the varia-
tion of the gust intensity along the flight path. 1

In the present paper the approach of reference 6 is extended to the
calculation of the rolMng and yawing moments on a wing due directly to w

vertical gusts, longitudinal gusts (hereinafterreferred to as horizontal
gusts), and lateral or side gusts. These moments sre required as a first
step in calculating the motions of a complete airplane h atmospheric
turbulence; the moments due to the motions caused by these input moments
can be calculated by conventionalmethods and will not be considered
herein.

In the first pert of the paper, a theoretical analysis is made
defining the power spectra of the rolling and yawing moments of awing
in terms of the statistical characteristicsof the atmospheric gust veloc-
ities. By using.an anal@icaJ- expression to define these characteristics,
a numerical solution of the lateral moments is presented in the last
psxt of the paper.

R

r
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Subscripts:

o trim value

g gust component

A bar over a qyantity denotes the mean value of the quantity. The
absolute value of a quantity is denoted by ] 1.

THEORE?IKLCALANALYSIS

Rreliminsry Considerations

~ this section expressions sre derived for the power spectra of
the rolling and yawing moments of an unswept airplane wing or thin lifting
surface of srbitrsmy plan form due to flight through random atmospheric
turbulence. Essentially, the procedure co~si~~s of expressing the rolling
moment at any =bitrary position along the.flight path in terms of the
gust velocity at that position, establishi~ the correlation function
between the rolling moments at any two poi@s along the fl~ht path, and
transforming this correlation function into an expression for the power
spectral density. The power spectrum of the yawing moment is then related
to that of the rolling moment through simple aerodynamic relationships.

Assumptions.- The following assumptions sre made in the analysis:

(1) The turbulence is homogeneous and isotropic; that is, the statis-
tical characteristicsof the turbulence sre invariant under a translation
or rotation of the space axes (although the results obtained for the verti-
cal component of turbulence require only the somewhat less restricting
assumption of axisymmetry).

(2) Time correlations ue equivalent to space correlatioti
the flight path - an assumption usually referred to as Taylor’s
(See ref. 7.)

along
hypothesis.

(3) ?he “Chord.tise penetration factor (the indicial-response influence
function) for the rolling and yawhg moments can be expressed as a product
of a function of distance along the flight pa~h (or time) only and distance
along the spsn only.

(4) The wing considered herein is relatively rigtd and, as a result
of the turbulent velocities, performs small motions about a mean steady
flight condition.

The implication of these asswnptions end the limitations they impose
on the results of the analysis are discussed in a subsequent section of
the paper.
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Coordinate system and gust components.-
10CEQ velocity field relative to the lifting
ure l(a). The velocity at each point in the

7

The system of axes and the
surface me shown in fig-
field is resolved into com-

ponents lying in the three planes of an orthogonal set of axes, the X-axis
of which is tangent at every point to the flight path. Throughout this
paper these three components are designated as follows: The component
alined with the X-axis Is referred to as the horizontal gust ~; the

component alined with the Y-axis is referred to as the side gust Vg;

and the component altied with the Z-axis is referred to as the vertical
gust Wg.

As the wing moves through the local velocity field, the random vari-
ations in the horizontal and verticsl gust components are defined both
in the flight-path direction and in the spanwise direction at every posi-
tion along the flight path, Rsndom variations of these gust components
across the chord sre taken into accouut by indicial.-responsefunctions
and, hence, need not be considered separately.

The side gust component of the gust velocity field is treated in
only a limited manner. Neither the chordwise nor the spanwise variations
of Vg are considered along the flight path; rather, Vg is assumed to

act on the wing as a point velocity with a variation only along the
flight-path direction. Contemporary aircraft exhibit such wide varia-
tions in distribution of dihedral across the span that it is doubtful
that a generalized analysis could be utilized. The point or centroid
smal.ysisshould be fairly accurate when the dihedral distribution is
predominant over only a small section of the spsn near the fuselage.
Such a distribution is exhibited by en unswept wing with zero geometric
dihedral mounted very high or low on a fuselage. For a wing with zero
aerodynamic dihedral, this component could be neglected completely.

Definition of gust correlation functions.- In order to define random
variations of the gust velocities both along the flJght path and across
the span of the wing as it moves through the turbulence, it is necessary
to define the correlation between any two velocities h the gust field
through which the wing passes. The space correlation function of a veloc-
ity u is defined in tams of the distance r as

(1)

*
Von % snd Homth (ref. 8) have shown that, in homogeneous isotropic
turbulence, the correlation between two velocity vectors a distance r

*
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d
apart can be defined in terms of two scalar functions f(r) and g(r)
and that this relationship is invarismt with respect to rotation and
reflection of the coordinate axes., These otie-dimensionalcorrelation w

functions relate the paired velocity components obtained by resolving
the velocity vector at any two points a distance r apsrt into two parts:
The pair lying along the straight-limepath between the yoints me known
as the ‘longitudinalcomponents and the pair ‘normalto the straight-line
path are known as the lateral components. These two pairs of components
sre pictorially shown in figure l(b). Such velocity components may be
measured in wind tunnels downstream of a grid mesh. (See ref. 9.)

In reference 8, it is further shown that these correlation functions
are interrelated by the differential equation

By defining the vsxiable r in
using the correlation tensor of
of the turbulence as it affects
and g(r). The vsriable in the
and vertical gust components h
is given simply by

+ f(rj = g(r) (2)

the coordinate system of this paper and
reference 8, a two-dimensional analysis
the wing may be made in terms of f(r)
correlation functions of the horizont$il.
the two-dimensionalXY-plane of the wing

r = ((fM2 + (x)’

The correlation function of the

=6== “- (~) ‘:
horizontal gust components, as

derived from the correlation tensor of reference‘8, is &fined
of x- and y-components of the present analysis by the formula

.

(&)’

P-7}
g (AC)’ + (&)’

(A%)2-1-(&r)’

The relationship between the components is shown schematically
me 2(a).

interms

(4)
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* In a like manner, the correlation function of the vertical gust
components affecting the wing, given in terms of the mean-square value— —.

● of the vertical gust velocity wg2, may be seen to be

.:2g[/~]Iwg(~,4) —

For the case of side gusts acting on a wing, the

simply

(5)

correlation func-
tion would be defined in terms of Ax and @ ‘if the spsnwise correla-
tion were considered. (See fig. 2(b).) hasmuch as the side gust is
considered to act only at a point on the span, & is zero, and the
correlation function for the side gust in terms of its mean-square value
becomes

Ivgbd = Vg%mx) (6)

Although the me~-squsre value of each of the three gust components
is given separate identity, under the assumption of isotropy

?=2=3 (7)
&

With the gust-velocity correlation functions thus defined, the
.* forces and moments due to sntisymmetric components of the gust-velocity

field acting on a wing passing through that field may be derived in terms
of these correlation functions.

Rolling Moment Due to Gusts

Verkical gusts.- The instantaneous wing rolling moment due to vertical
gusts can be written in terms of an indicial-response influence func-
tion h’(t,y) as

w

ff

b/2
MX(t) =

-m -b/2

According to assumption (3) ofG
siderations” (see also the argument presented in ref. 6), the func-

( )h’ tl,y) wg(t-tl,Y @ dtl (8)

the section entitled “Preliminary Con-

tion h’(t,y)- can be expressed in the form
*
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h’@Y)= h@) ?’(Y) (9)

where 7(Y) is a steady-state span influence
tains the unsteady-lift effects. The rolling
written as

function and h(tl) con-
moment csn then also be

()
Wg t-%Y W (lo)

If the correlation function for the rolling moment is calculated
from equation (10) and a power spectrum for the rolLing moment is obtained
by tsking the Fourier trsnsform of the correlation function, the resulting
expression may be shown to consist of a product of two functions: One
function is the result obtained from quasi-steady-considerationsalone,
and the other is the absolute squsred value of the unsteady-lift function
for sinusoidal gust penetration such as that given by Sesrs in refer-
ence 10. Consequently, consideration will be confined to an analysis —

using quasi-steedy expressions for the rolling moment; that is, the lsg
in buildup of lift across the chord of the wing due to the gusts is not
included. —

In quasi-steady flow, the rolllng moment of a wing due to a variable
a

angle-of-attack distribution across the sp= is given by
.

9.

Mx = qSbCZ

= ~; M-%(’]y‘y

where section lift

z(y) = CJY) q C(Y)

(IL)
...

and local engle of attack due to gusts __ —

%= wg/u
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Now, one theorem of linearized airfoti theory states that the Mft (or
rolling moment) on a wing due to an arbitrary spanwise angle-of-attack
distribution is equal to the integral over the entire wing of the product
of the spsnwise lift distribution due to a unit constant (or linearly
vmying) sngle of attack and the given arbitrsry sngle-of-attack distri-
bution. Eence, the rolling moment is also given by

(X2)

This theorem is valid not only in steady but also in indicial flow.
(See reciprocity theorems of ref. 11.)

When the indicated substitutions sre made, the rolling-moment coef-
ficient along the flight path is

pertains to a linesr
may be seen that, by
relation

the stesdy-state lift distribution

(13)

(14)

antisynmetric sngle of attack across the span. It
virtue of its definition, 7(N) mmt Satisfy the

—
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Horizontal gusts.- In analogy to the analysis of the preceding see- ‘
tion, considerationwill be confined to the quasi-steady case. When
stability axes are.used, a change in forward velocity at sny spanwi.se
station increases the magnitude but does not cheage the direction of the

.

lift and drag vectors. Thus, the horizontal-gust contribution to the
dynsmic pressure is

4(Y) =~

{
1 v}p pg(Y)+u2-

(.:pugp+mug)
Ug (Y)

=2Q—
u

under the assumption that ~<< U.

is used, the lift on each section is
attack:

The rolling-moment

When this linearized a~proximation --

proportional to,the local angle of

coefficient due to horizontal-gust velocities is
thereby de~ined as

-Cz % 1
Cz(x) = p; J’ 7(Y+) Ug(x>w) w (16)

-1

where now

(17)

The only difference in evaluating y(p) for
gusts lies in the definition of the psmmeter

.

horizontal snd vertical
having a vsriation of @

L
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across the spsn; for the vertical gust, that psrsmeter is tsken as the
additional angle of attack and, for the horizontal gust, that parameter

is 2%;” The con~tion that

remains unchsnged.

Antisymmetric Span Influence Function 7(P)

The antisymmetric span influence function 7(W) is defined over
the span so that any given distribution of 7(P) wild produce a unit
roll@g moment. These distributions refer to the span loading due to
a Iinesx sngle of attack a = H for the vertical gust or a linear

lesding-edge velocity @ ~ = @ for the horizontal gust. Four basic

variations of 7(P) have been considered with the proper constants so
that equation (15) is satisfied. The equations for the 7(W) varia-
tions considered are given in table I and plots of these variations me
shown in figure 3(a). The names given to the four distributions obtained
by rolling the wing refer to the distributions which would be produced
by a uniform angle of attack.

Correlation Function of the

Vertical gusts.- The autocorrelation
due to verticsl gusts at any two stations
defined =

.

RoXM.ng Moment

function of the rotig moments
along the path of the wing is

(18)

—
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With the substitution of the expressions for
.

~z(x2) and cz(xI) as

given by equation (13), the correlation function of equation (18) becomes .

q=) “H= &j“~ f’,(,1’)%(’1,,1’)dLi*J”7(Y2*).,(’,>Y,*) *,* ‘% -

(w)

where it is assumed that the functions are convergent under either order
of integration. An expression is thus obtained for the correlation func-
tion of rolling moment in terms of the correlation function of vertical-
gut velocity. In equation (19),

is the sane as the two-dimensional correlation

as equation (5) with x2 - xl = Ax and y2* -

function deftied

Y1* = L@=$.

esrlier

By the proper substitution of vsriables, the double integrals of
equation (19) may be separated into the singfi integral of th~ prduct
of the integrated weight@g functions of 7(P) and the correlation
function ~w . Thus, with the substitution of

g

X2 - X1=UT

Y2* _yl*=~

.

.



NACA TN 3864

equation (19) becomes

where

,(,, = ~’-’ ,(Y,*) ,(Y,*+7)W,*

and

r, .7

15

(20)

(21)

(22)

Eqpation (22) may be recognized as being equivalent to equation (5).

Horizontal gusts.- ~ an identical msmner, the autocorrelation func-
tion of rolling coefficient due to horizontal gusts at any two stations
along the path of the wing is derivedby use of equations (16) and (18):

With the same change of variables as

)7(Y2*)*%(X2-XIJY2*-Y1*@l* dY2*

in the preceding section,

(23)
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.

16

where

2

()

bq
-Z

()
(UI-)2+ :2

-1-

(24)

and equation (24) is now the equivalent of equation (4). The integral.
weigh~ing function r(q) is tie ssme for bo~h the horizontal- and the
vertical-gust contributions to their rolling-moment correlation functions.

Integral Weighting Function r(~)

The integral weighting function I’(q) as defined by equation (21)
has been evaluated for the four distributions of y(~) given in table I.
These values are listed in table II and plotted against TI in figure 3(b).
It may be shown
relationship

that the nature of the f-mction i= such that the

(25)
‘o

must be satisfied for any variation of .17xhich pertains to an anti-
symmetric variation of 7(#). In table II the elliptic distribution
is given in terms of K(k) and E(k), which are complete elliptic inte-

2-q
grals of the first and second kind, respectively, of mcdiilms k = —.

2+~

The derivation of the elliptic weighting function is included in the
appendix of the paper.

The power

as the Fourier

Power Spectra of the Rolling Moment

spectrum of the rolling-moment coefficient Cz is defined

transform of the autocorrelation function of Cl: #
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+)) = *

For the vertical gusts,

J’
*T

‘&#T) e-k d(UT) (26) ‘ -
-m ,

the power spectrum of the rolling-moment
coefficient may be fo~d by-substituting the derived relationship for

l~z(UT) given by equation (20) into equation (26):

(27)

L

Chsnging the
● integrals of

and q. The

order of integration here is permissible inasmuch as the
the correlation function of Wg me convergent in both UT

integral Iw is defined as

(28)

Similsxly, the power spectrmn of rolJing-moment coefficient due to
the horizontal component of gust is obtdned from the substitution of
equation (23) for the term ~cl(th). appearbg in equation (26):

(29)
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where the integral Iu in equation (29) is defined as

‘“(:”)=L ‘-i%Q’g(u’)’)‘(m) (30)

.

Thus, for two of the three components of turbulent gust velocities,
the power spectrum of the rolling-moment coefficient is dependent on the
integration of a function of the lifting distribution of the wing times
a fuuction which represents the Fourier trsnsform of the correlation
function of the vertical and horizontal gust components over the wing
span●

As previously stated, these results are based on quasi-steady con-
siderations. unsteady-lit% effects can be taken into account simply by
multiplying the power spectral density of the rolling moment due to each

( )1
2

gust component by the function q~
2U

, where q is the Sears function

given in reference

As pointed out
approximate msnner;
this approximation,

LO.

Approximation for Side Gusts

previously, the side gust is treated here only in sn
that is, the spanwise effect is neglected. Based on
the roll@-moment coefficient is defined as

Vg(A)
cl(x) = cl —

Pu

The correlation function is defined by

Cgp%gz

y@7). # g(u’)

emd the power spectrum is defined by

( 31)

“

.—

(32)

(33)

n.
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<
where

.

19

(34)

Relations Between the Yawing and the Ro~ing Moments

NO attempt is made herein to calculate directly the yawing moment
due to atmospheric turbulence. Because of the more complicated nature
of the phenomena which give rise to drag, as compared with those which
give rise to lift, such an undertaking would be quite difficult. Further-
more, in view of the fact that the yawing moments on the wing due to tur-
bulence we relatively small, a detailed analysis would not generqlly
be warranted. In this section, therefore, an approximate procedure is
outlined for obtaining the yawing moments from the rolling moments.

The yawing-moment coefficient due to sideslip can be expressed in
the form

~ = en.@) p

where, in this case, m is the sw of the trim angle ~ and the
—

instantaneousmean vertical-gust sngle ~, and where ~ is the insts.n-
~ u

taneous meau side-gust angle —~ so that
u

where the second term is of higher order and is neglected. similarly,
differences in vg along the spsn give rise to higher order terms.

The rolling moment can be expressed in the sane form, so that the
relationship between the yawing and roll- moments due to side gusts
is given by

“ (35)
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Actually, this contribution to the
and is included here primsxily for

For the yawing moments due to

NACATN 3864

yawing moment is generally negligible
the sake of completeness.

vertical and horizontal gusts, simll.sr

.—

reasoning may be employed. The yawing moment in these cases arises from
the sntisymmetric part of the tistantaneousangle-of-attackdistribution
due to turbulence~-as does the rolling Wment, so that the two moments
may be expected tobe approximatelyproportional to each other; that is,

()‘%p
Cn(wg) = — cl(Wg)

Czp *
(36)

(37)
.

In essence, these relations imply that the yawing moment due to a given
instantaneous spanwise gust distribution is the ssme as the yawing moment
due to a linear gust distribution which has%e ssme ro~ing moment. The
deviation of the actual distribution from a linesr one results in small
differences in the vortex field md, thus, in small differences in the
induced downwash. These differences lead to a contribution to the yawing
moment which is believed to be small and, hence,

,.

In terms of their power spectra, the yawing

has been ignored.

moments sre~defined

b—

as

( 38)

The power spectra of the rolling moments =e defined in the preceding
sections.

h

.

.-—
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APPLICATION

Approximations to the One-Dimensional

Correlation Functions

(Point)

In order to evaluate the effects considered in the preceding part
of the paper, calculations wtll now be made by using,the results derived
therein. These calculations will be bssed on a simple analytical expres-
sion for the longitudinal pint correlation function which has been sug-
gested in reference 12 on the basis of measurements in wind tunnels:

M
f(r) = e L (39)

where L is the longitudinal scale of turbulence defined for any longi-
tudinal correlation function f(r) by

J’
m

L= f(r) b (40)
o

The characteristics of clear-air turbulence measured in the atmosphere
(ref. 13) maybe shown to be reasonably well represented by equation (39),

‘- with a value of L of approximately 1,000 to 2,~ feet. There are some
theoretical objections to this function - primarily the fact that it has
a nonvsnishing slope as rq and, hence, that the associated power

& spectrum does not decrease rapidly enough for very short wavelengths.
These conditions imply that the mean squsre of the derivative of the gust
velocity with respect ta the space coordinate is infinite. However, from
available measurements on atmospheric turbulence, it appears that equa-
tion (39) remains vslid to distances which sre smill compsred with the
span of the sirplsne (on the order of several inches), and the behavior
of the spectrum at very short wavelengths is relatively unimportant because
airplanes cannot respond to them to any appreciable extent. Therefore, in
the absence of more reliable information all calculations described fi
this paper sze based on eqyation (39).

The corresponding lateral correlation function related to f(r) by
equation (2) is found to be

( )-
Llr

l-ig(r) = 1- ~ e L (41)
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A plot of the functions given by equations (39) and (41) is shown
in figure 4. Their respective power spectra, denoted by G(k’) and

F(k’) where k’ = ~, are.given by

F(k’) =% 1

1+ (k’)2

G(k’) =3
1 i-3(k’)2

[1 + (k’)2]2

(42)

(43)

These power spectra ere plotted to a logarithmic scale in figure 5, where
it may be-noted that the asymptotic slope as k’jrn has a vslue of -2.0.

Calculations for Vertical Gusts

Rolling-moment correlation function.- When equation (41) is substi-

tuted into equation (22) with r =
i

(UT)2 +

tion defined by equation (22) becomes
()bJ2, the correlation func-
2

basmuch as the evaluation of the rolling-mm!ent correlation function,
as such, is not necesssry to the enalysis of this paper, only limited
consideration is given to the calculation of autocorrelationfunctions.
Equation (20) has been evaluated in closed form for the case of the
rectangular distribution of the span influence function 7(@) as giVen
in tables I and 11:

‘u

—
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.

_.—

)- 30’%2 + 24A + 24 e-h +

~1 are defined

P’%[Fl(P’,A)- 7%(P’,N]
}

(bs)

in reference 6 as incomplete modified
Eessel finctions where

2v(p’,A) (46) “

and

These two parameters represent the ratios of the distances b and UT

* to the Wtegral scale of turbulence L. The psrsmeter ~’ reflects the
size of the wing spsn relative to the characteristic size of the turbu-
lence and, as such, is one of the more important parameters appesring in
all the calculations involving spsnwise correlation. It effectively
scales the magnitude snd shape of the correlatj.onfunctions ad power
spectra snd, in the limit as P~~O, the equations for the antisymmetric
moments likewise go to zero inasmuch as no rolling or yawing moment”till
exist when a finite span shrinks to a @nt.

The psmmeter A is a measure of the fight-path distance relative
to the characteristic size of the turbulence and, in the limit as A+j
the correlation function must reduce to the mean square value of the
rolling-moment coefficient; hence,

CZ2=Iqo=o)

‘[3wg2czp2 ,fJ
= +32$ ) 1

‘2+24p’ +24e-~’ +p’3-24
~iJ+u2 3P

(4?)
—
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Inasmuch as no
tions ‘~ and xl,

adequate tables appear
a numerical evaluation

lW.CJiTN 3%4

to be available for the func-
.

of equation (45) has not been

made. Kowever, an analysis of this correlation function with other .

approximations for f(r) indicates that the effect of span loaddng is
minor and that a reduction in B! attenuates the correlation function-.

EvahationofI w(~,q).- For the vertical gust component, the inte-

()
gral definition of Iv ~,q is given by equation (28) whereas i&g(Ur,~)

is now defined by equation (4.4). The Mi’cated integration may be per-
formed in closed form as a function of q and the reduced freqUency
psrsmeter k’. Thus,

.

1$’) = ~L~iwl - ~im]~~w””’

(

~~-(v~~~~~]+~[’:~;~ K.P~+(,,)2 ,~,=U
l-t(k’)2 [=1].1+k

where

.
.

and ~ - Kl are modified E!esselfuuctions of the second kind of

order O and 1, respectively.

A plot of equation (48) is shown in figure 6 as a function of the
frequency parameter k’, for a range of values of j3’q/2 fromO to 1.0.
Although the physical significance of the function Iw is rather obscure,
the plots me useful in the subsequent nuqerical inte~ation of the prod-
uct of Iw and r.

Power spectrum of rolling moment.- In general, the anaQtical solu-
tion of equation (27) for the power spectrum of the rolIling-momentcoef- W
ficient due to vertical gusts, when possible, is a tedious process.
Numerical integration by means of either Simpson’s rule or some inte-
gration process of higher order is generally preferable to integration .-
in closed form. However, the analytical evaluation of equation (27) for
the case of a wing with rectangular spsn losding is given here in order
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.
to illustrate some of the characteristics of the equations. After the
indicated substitutions me made, equation (~) becomes

6~iczp2 2

!

()

P’T 2

@cl(k’) =
J( 4-6q+q3) ‘y2~+ %’+ 3(’1)5K

&u3 o 1+(”)

1
F+ (k’)2] 3/2 1 d~

for which the integrated solution is

+7%@
~c~(k’) = (R3(k’)z

SU%4Fi- (k’)~2
:@(x) ‘+ p+16.2F- (kt)’l}~(a)+J’

{ }2B3~-(k’)2]+ Ya[l - (k’)~ Kl(a)+ 2a2[l- 3(k’)2]- ~[1 - (k’)2]
)

(49)

where
‘=B’-J “ =*J and IfQ(a) and Kl(a) are modified

1 Eqution “~~t#enBessel functions of the second kind of argument a.
plotted in figure T(a) as a function of k’ for a rsnge of p’
0.03125 Sndl.o.

For smell values of frequency ~ (~d hence kt) or sc~e factor ~’,
equation (49) becomes poorly behaved because the solution takes the form
of small differences of high-order terms. The reason for this may be seen
by expanding the Bessel functions in their power-series form and grouping
like pawers of the v=iable a. The coefficients of the first three terms

-4 -2of the power series a , a , and a“ (which We the predominant terms
for values of a < 1) ~e identic~ zero. Under these conditions, small
computing errors or the lack of significant figures will cause lsrge inac-
curacies in the numerical evaluation of the function. -

The difficulties just described may be overcome somewhat by evaluating
equation (49) for the Wting case of k’ = O:

(50)

‘Values for the integral of ~ may be found in several publica-

tions, one of which is reference 14, table 2 (Zahlentafel 2). A com-
prehensive listing of other available mathematical tables including these

--

Bessel functions is given in reference 15.
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When the Bessel functions sre again expended in powers of ~t, only several. -
terms are needed to evaluate the function at small values of p’. As before~
the coefficients of all negative orders end the zero order of P’ are
identically zero.

.

The physical necessity that, as the span b approaches zero, the
expression for the power spectrum of the rolling-moment coefficient must
also approach zero is satisfied by equation (49) inasmuch as the lowegrt
order term with a nonzero coefficient appe.a~
(as pointed out above); that is, for b-,

Ott(u) - (Constsnt)a2 =

in the equation is a2

o

In order to compute ~cl for the other three types of distribution

of wing loadhg given in tables I and II, a numerical-integrationprocess
involving Simpson’s three-point rule of integrationwas en@loyed. The
power spectra thus obtained are plotted in figures T(b), (c), and (d).
This method was also used for the rectangular lift distribution and was
found to give good agreement with the analytical results.

.

It is of interest to note that where= the power spectra of the
vertical gust approach a logarithmic decrement of -2 (see fig. 5), the
ro~ing-moment power spectra shown in figure 7 approach a decrement of -3. H
At the low-frequency end of the spectrfi (long wavelengths) the power
appesp to approach a constant which is zero only when j3~,the ratio of
span to scale of turbulence, is zero. ““-

.

Some simplified approaches to the calculation of the rolling power
of gusts (for exsmple, ref. 4) lesd to the result
the rolling power of the vertical gust appears aa
(slope) of the vertical-gust spectrum. As may be
such an approximation is ~ustified only in a very
for wings having small values of ~’. -

that the spectrum of
the first derivative
seen from figure 7,

.

small band of frequencies

and

tion

tion

Calculations for Horizontal Gusts

Rolling-moment correlation function.- When the expressions for f(r)
g(r) given by equations (39) and @l) ez?esubstituted into equa-

(24) with r =

for horizontal

F= PT”-””- ““”--the Orie-dimensional correlation func-

gusts becomes
●

.
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The correlation function of rolling moment is obtained by inserting equa-
tion (51) into equation (23) ad integrating. For a rectsmgular distri-
bution of fl#),

L

snd

As h the case Of the vertical
been calculated for the other
reasons sJresiLygiven.

()
Evaluation of Iu ~,q .-

tion (30) for the case of the

,2
+ 3p

)
+6p’ +6 e-p’

gust, the correlation
three distributions of

The evaluation of Iu,

(52)

-16 (53)

function has not
~(~) for the

as deffied by eqw-

horizontal gust, is given by the expression
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r -1

.

U.L
where kt = --, ~KomdK1 sre the mmlified Bessel functions of

u

second kind of argunent V-*
—

—

The function given by equation (54) is plotted sgainst k’ in fig-
8 for values of P‘0/2. Values taken from this plot may be used In
numerical integration of the power spectra of the rolling-moment #

coefficient.

Power spectrun of rolling moment.- The power spectrum of the rolling .

moment due to the horizontal components of turbulence acting on the wing
has been determined by using the expression for Iu obtained in the
preceding section and the four distributions of the parsmeter fiq) given
in table II. The integral of equation (29) has been evaluated nmerically
for all four cases of load distribution, and the resulting variations of
the power spectrum with frequency and p’ are plotted in figure 9. In
addition, the snal.yticalsolutions for the cases of rectangular and par-
abolic distributions sre given here and their nmerica3 values were
checked against those obtained by the numerical-integrationprocess. By
use of eqpation (54), the solution for the rectangular case is found to
be

.

.
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8

.

.

.

.

37&#cJ
Q@l(k’) =

fiti
J2(4-6q+73)~-K.-(*~G].q

‘I$)(x) dx + ‘.2(3s.2 + 32)@(a] +

16a(a2 + 4)Kl(a) - 641 (55)

where a . ~’~~- and k’ = $. The analytical solution for the

parabolic distribution is given by

240Q%c@czp2
Oct(k’) =

(
[f )

~9a6 + 25,344a4 + 331,776a2 ~(a) +

7fiU3a81+ (k’)2

(a7 + 3,424& + 133,632a3+ 663,552*) .l(a) +

-1

(a7+ 63a5)
f ~aK()(x) dx - I1,1.20a4+ 3.2,256’2- 663,552

(56)

A comparison of the values obtained for equations (55) and (56) and
plots of the results obtained by the numerical-integrationprocess indi-
cated no difference, and none is shown h figure 9.

It is significant to observe that very little variation exists in
the power spectra of figure 9 for the four span loadings considered.
However, as compared with the rolling moment due to vertical gusts
(fig. 7), the rolling moment due to horizontal gusts is relatively small
for small values of trim angle of attack. Although no exact expression
for the ratio of the power spectra of the rolling moments due to ~

and Wg may be given without including ~’ and 7, it may be seen from

figures 7 and 9 that, in general,
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.

.-–L–‘cl w ~ 0.2

‘cl Ug %2

where ~ is given in rsiiians.

Chlculations

For the side gust considered,
rollhg-moment coefficient as given by

for

the

side Gusts

correlation function of the
equation (32) becomes

and
the

(m
.—

(58)

the variation of this function with Ur/L is, of course, equal to
-iation of equation (41) with r, which is plotted in figure 4.

The power spectrum of the rolling-moment coefficient as given by
ecpation (33) with G(k~) given by eqpation (43) becomes

2—

% ‘g2L 1+ 3(k’)2
OCZ(k’) =

“@ b=:)’]’
( 39)

The variation of the spectrum with frequency k’ = $$ is shown as the.—

G(k’) curve of figure 5.

DISCUSSION

—

The purpose of this section is to discuss the implications of the
assumptions made in the analysis of this paper, the reasons for making
these asmxuptions, sm.dthe application of the results.

*

.
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Assumptions Concerning the Nature of Turbulence

. The turbulence was assmed to be homogeneous in order to make the
problem stationary in the statistical sense and thus permit the use of
the mathematical techniques developed for such proble’ms. In a practical
sense, turbulence can be homogeneous only in a limited body of air. The
assumption thus implies that the dimension of this body of air along the
flight path is large compared with the distance traversed h the reaction
time of the airplane. ~ the case of loads studies this reaction time
is of the order of the time to dsmp to one-half smplitude, but, in the
case of motion studies, the reaction time may be much larger. Obviously,
the greater the body of air, the greater the reliability with which the
loads and motions csm be predicted (in a statistical sense) for one run
through it. In general, turbulence at very low altitudes, which may be
influenced significantly by the configuration of the ground, and the
turbulence in thunderstorms may not be sufficiently homogeneous for this
type of analysis, but other types of turbulence are likely to be sub-
stantially homogeneous over sufficiently large distances.

Isotropy was assumed in order to permit the required two-dimensiond
correlation functions to be expressed simply in terms of the one-
dimensional correlation functions. For sufficiently short wavelengths
all turbulence is isotropic (see ref. 7), but for long wavelengths it
csn be isotropic only if it is homogeneous (both in the plane of the
flight path and perpendicular to it). (The condition of s.xisymmetryis

s less restrictive inasmuch as it does not specify the variation of the
characteristics of the turbulence in the vertical direction.) In prac-
tical problems, if the turbulence may be assumed to be homogeneous, the
conditions of isotropy ue likely to be satisfied sufficiently to permit
the use of the approach presented herein for all but very long wavelengths.
The wavelength at which this approach ceases to be valid depends on the
size of the body of air under consideration, beimg longer for a lsrge
body.

Taylor’s hypothesis implies that the vaiation in gust intensity
that prevails along the flight path at my instsnt will remain substan-
titiy the same until the airplane has traversed the given body of air.
The required correlation functions for atmospheric turbulence sre thus
in the nature of space correlation functions (rather than time correla-
tion functions) snd have been considered as such. The statistical char-
acteristics of the turbulence sre then independent of the speed at which
it istraversed. Clearly, the validity of this hypothesis depends on
the flyhg speed of the airplane and it would be expected that, at very
low speeds, the hypothesis of Taylor becomes less valid and the results
may be less accurate. On the basis of present lamwledge, no definite

.
lower Lhnitin.gspeed can be quoted. The effect of finite flying speed
on the gust correlation function can be expected to be most pronounced
for large distances, where the correlation is weak. Thus, the effect
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on the various spectra is lil@y to -be small and to occur at the longest
.

wavelengths, where, as previousQ mentioned, the spectra are somewhat —

uncertain for other reasons as well. .

For practical purposes, the parameter L (the integral scale of
turbulence) used herein is a largely fictitious qusmtity, inasmuch as
it is, to a large extent, proportional to the vgiluesof the gust spectra
for infinite wavelengths. In view of the uncertainties in the values
of the spectra at long wavelengths and the fact that the spectra h this
region predomtiantly define the area under the integral, the parameter L
has little physical.significance. Therefore, at present, insufficient
information is available to give an exact value for L to be used in
connection with the numerical results calculated herein. However, on
the basis of the measurements such as those of reference 13, a value
of 1,000 to 2,000 feet appears to be appropriate for the conditions of ‘
the referenced tests. It is desirable to obtain more information con-
cerning the spectra of atmospheric turbulence under a wider range of
conditions. More definite values could then be deduced by fitting meas-
ured results by means of an analytical expression of the type used here.
This expression could be used as amesns of obtaining a value of L by
extrapolation of the measured results to infinite wavelengths (zero
frequency).

--

—

Assumptions Concerning the Aerodynamic Forces
a-

The fundamental assumption concerning the aerodynamic forces is
that they vsxy linesrly with gust intensity. This assumption implies
that the ratio of the gust speed to the flying speed must always be *

fairly sma~; if the aerodynamic forces and moments tend to vary with
gust intensity in a nonlinear manner, as the wing yawing moments do for
all angles of attack and the other forces and moments do for high angles
of attack, the ratio of gust intensity to flying speed must be very
small - about 1/30 or less. However, as previously mentioned, the wing
yawing moments due to gusts sze likely to be quite small, so that some
error in them due to slight deviations from linearity is not likely to
affect appreciably the results of an analysis of the lateral motion.
Hence, for sn airplane flying at small singlesof attack and at speeds
of about 200 knots or more, in conttiuous turbulence, the assumption of
linearity should be valid; for flight in severe thunderstorm!, it is
not likely to be vslid, and, for flight at high angles of attack, it is
likely to be valid only for light turbulence.

The rigidity of the wing, which was mentioned in the list of assump-
tions, enters only indirectly into the problem considered herein. The
results obtained here sxe valid whether the wing is rigid or not. How- .-

ever, in the case of flexible wings (the term “flexible” being used to
describe-wings with &formations which give rise to appreciable aero-
dynamic forces), certs=h additional infofition is required. (See ref. 6.) -
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*
This information may take the form of span influence fuuctions 7(Y)
modified by static aeroelastic effects, or may require certain cross-

. correlation functions or cross spectra between the gust forces end the
dynsmic forces, depend- on the individual case.

The assumption that the indicial-response influence function h(t,y)
can be written as a product of functions of time only and distance along
the span only is based on the reasoning of reference 6. This reasoning,
in turn, is based on the observation that, according to the available
information for the lift distributions due to sinusoidal motions (and,
hence, those due to indicial motion), the lift distribution tends to be
substantially invarisnt with frequency (or time) except for an overall
factor. Inasmuch as this information is confined to unswept wings, this
assumption may not

In this paper
culated for a wing

be valid for swept wings.

Application of the Results

the rolling moments and yawing moments have been csl-
due to the u, v, and w conq?onentsof turbulence.

If the turbulence is isotropic, these components are statistically inde-
pendent at a point. In any practical application, all three components
are always present end the wing rolling and yam moments due to the
combined action of the three co~onents must be known. b isotropic
turbulence, the cross correlations between u and w ad between v

* and w in the horizontal plane are zero, although u and v have a
nonvanishing cross correlation. Thus, the moments due to v snd w can
be added directly, but, if horizontal-gust effects are to be taken into.
account, not only the moments due to u calculated herein but also the
moments which arise from the cross correlation between u snd v should
be added to the others. However, there is reason to believe that the
horizontal-gust effects on the lateral mcments are generally very small,
so that neglect of this cross-correlation effect is usually justified.

The rolUr@ and yawing moments due to ug and wg considered herein

are only those contributed by the wing but, inasmuch as the lateral moments
contributed by the fuselage and tail as a consequence of these two com-
ponents of gusts are generally very small, the results given here may,
in general, be used to represent the lateral moments on a complete air-
plane due to these tyo gust components.

Similarly, the rolling and yawing moments of a complete airplane due
to the v-component of gusts depend not only on the wing contribution
considered here but also on the contribution of the vertical.tail,

. which can be calculated in a straightforwardmanner. For instanae, a
method of calculating the yawing moments and side force on a fuselage
and vertical fin due to side gusts is found in reference 17.
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Although the contribution
the lateral-moments appe~s to

of
be

the horizontal
small compared

NACA TN 3$54

.
component of gusts to
with the other two com-

ponents, it should be kept in mind that the effect of this component .
increases as the square of the trim angle of attack. (Seeeq. (57). )
For conventional airplanes in the landing configuration snd for verti-

—

tally rising airplanes in the transitional stage, the effects of hori-
zontal gusts may well be predominant in calculations of the forces,
moments, and motions due to turbulence.

CONCLUDING REMARKS

The correlation functions and power spectra of the rolling and yawing
moments on an airplane wing due to the three components of continuous .

random turbulence have been calculated. The rolling moments due to the
longitudinal (horizontal) and normal (vertical) components depend on the
spanwise distributions of instantaneous gust intensity, which were taken
into account by using the inherent properties of symmetry of isotropic
turbulence. The results consist of expressions for the correlation func-

-.

tions and spectra of the rolling moment in terms of the point correlation
functions of the two components of turbulence.

Specific numerical calculationswere msde for a pair of correlation
functions given by simple analytic expressions, which fit available
experimental data very well. Calculations were made for four lift dis- .J
tributions and the differences in the results calculated for these dis-
tributions were small. By comparison with the results calcul.atedherein, ,
the results of previous analyses for which it was assumed that random .

turbulence along the flight path and variations of turbulence across the
span were linear have been shown to be valid only when the ratio of the
spsm to the integral scale of turbulence (about 1,000 to 2,000 feet) is
small●

A compszison of the power spectra of the rolling moments due to
horizontal gusts and those due to vertical gusts showed that the vertical
gusts were predominant at small values of trim angle of attack (or trim
lift coefficient); however, the relative effect due to horizontal gusts
increased as a function of the squsre of the trim angle of attack.

The rolling moment due to lateral (side) gusts, which is small, was
expressed in terms of the instantaneous value of the gust at representa-
tive points on the wing, so that the effect of spanwise variation in gust
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intensity was ignored. The yawing moments were considered to be propor-
tional to the rollQg moments, the constants of proportionality being
given by simple aerodynamic relations.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., September 6, 1956.

.

.
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API?FINDIX
.

EVALUATION OF THE EILIFTIC INTEGRAL WEIGHTING FUNCTION

The evaluation of the integral weighting function r(q) involves
the integral given by equation (21):

For the case of the elliptic distribution of the sd.ditionalspsm loading
factor,

and the titegral weighting function to be eveluated becomes

.

Under the substitution

the integral may be written as
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With the notation

r(q)= 32 - 1#(2

2 -nk=~=—
2+7 2+q’

1
+ q)

J[
(2-n) 2#-qqfl-b)(l+x) (l- X)(l+kx) dx

-1

where the integrand may be seen to be an even function of the variable x.
Multiplying numerator and denominator by the rs.dicalsnd expanding yields

[

r(q)-32- N(2 + I) k’(2 - n)2J1 A & k’[(’ + n)’ + (2 - I-I)’ + #]J-l
o ~-

0 ~-~+

[(,-q) ’+lp+l l%’

‘~’* -q2G=== 1

The integrals may be’recognized as elliptic integrals in powers of x~
for which the closed-form solutions may be found in reference 16, for
exsmple. In terms of the s~dard elliptic integrals (in Jacobi’s nota-

tion) of modulus k = U,
2+q

nl

K(k) =
J o

dx

(1 - x2)(1 - k2x2)
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which is defined as a complete elliptic titegral of the first kind, and

1 1 . k+z
E(k) =

f{
—dx

o 1- X2

which is defined as a complete elliptic inte~al of the second kind.
Tables of these integrals may be found in most mathematical handbooks
as we~ as in reference 16. In terms of these integrals, the solutfon
for the integral weightimg function is found to be

[ l! )k2(2+~)2+(2-~)2+~2
2 + k2 K(k) - 12(l+k2)E(k) +

~k4

[(2-n)2+,Q+q
k2

.1

‘~(k) - E(k~ “-#K(k) “

.

.
—.

[ ‘J=(2 + q) 4v(T13- 3q - I)K(k)+ (4+ 9T2 - v4 E(k)
‘ 1%2
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TABLE I

VARIATION OF 7(@)

.

.

I Distribution

Rectangular

Elliptic

Parabolic

Triangular

7(P)

TABLE II

~EGRAL WEIG~ING FUNCTION r(q)

Distribution r(q) Limits

Rectangular 6(4 - 6q + q3) o< <2
n==

E31iptic 5w(2+q) [hq(q2-3q-l)K(k) + O%zp
1%2

(k+ 9T12- q4)E(k)l

Psxabolic g@ - 336q2 + 2&)q3 - 42q5 + 3q7) osq52

288
—(2 - 10T2 + 5q3 + 5q4 - 3q5)
15

osq~l

Trisngulsr

W(8 - 20q + 10q2 + 5T13- 5q4 + @ l:q52
15
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VgA Ua

z

(a) Wing passing through

l-r+

three-dimensionalturbulence.

Longitudinal components, f(r)

Lateral components, g(r)

(b) Components of turbulence as a function of distance r.

Figure 1.- Sign convention and stability axes of awing passing through
a turbulent velocity field. Arrows denote positive direction, where
applicable.

.

.

.
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